Web Appendix
Multinomial Logit Models in Marketing – From Fundamentals to State-of-the-Art

Accompanying R code to:
Elshiewy, Guhl, and Boztug (2017).
Multinomial Logit Models in Marketing – From Fundamentals to State-of-the-Art.

Load packages
The following packages are necessary to run the script. In case these packages are not
already installed, please run install.packages("package-name") first for each package.
library(mlogit)
library(data.table)
library(ggplot2)
library(psych)
library(mvtnorm)
library(bayesm)
library(gmnl)

Functions
The following functions are necessary for some of the computational steps after the
estimation (e.g., computing elasticities).
This function computes (heterogeneous) probabilities and market shares for a
(heterogeneous) MNL model given draws from the estimated population distribution.
mnlProb <- function(x, betai) {
 u <- x %*% t(betai)
 num <- exp(u)
 tprobs <- t(num) / colSums(num)
 probs <- t(tprobs)
 shares <- rowMeans(probs)
 res <- list(shares = shares, probs = probs)
 return(res)
}

This function computes the matrix of first derivatives for a (heterogeneous) MNL model
given (heterogeneous) preferences and corresponding probabilities.
mnlDeriv <- function(betaxi, probi) {
 nJ <- dim(probi)[1]
 nD <- dim(probi)[2]
 betaxim <- matrix(betaxi, nJ, nD, byrow = TRUE)
 x <- rep(1, nJ)
 eta <- (-1 / x) %*% t(rep(1, nJ)) %*% tcrossprod(betaxim * probi, probi) / nD
 diag(eta) <- (1 / x) * rowSums(betaxim * probi * (1 - probi)) / nD
 return(eta)
}

This function computes an elasticity matrix. "coef" specifies the position of the
variable of interest in x and beta. (Default is coef = 4, here: price)
mnlElast <- function(x, betai, coef = 4) {
 nJ <- nrow(x)
 probs <- mnlProb(x, betai)
 shares <- probs$shares
 shares <- matrix(shares, nJ, nJ, byrow = TRUE)
 eta <- x[, coef] / shares * mnlDeriv(betai[, coef], probs$probs)
 return(eta)
}
This is a convenience function for computing elasticities for several choice sets
"coef" specifies the position of the variable of interest in data and betai.
(Default is coef = 4, here: price)
computeElast <- function(data, betai, coef = 4) {
 E_chid <- sapply(data, FUN = mnlElast,
 betai = betai, coef = coef,
 simplify = "array")
 E <- apply(E_chid, c(1, 2), mean)
 E[c(1, 2, 4, 3), c(1, 2, 4, 3)] # reorder matrix (delete this line for own analysis!)
}

This functions reshapes and summarises output of bayesm
reshapeBayesmDraws <- function(out, post_index = NULL, coef_names = NULL) {
 C <- dim(out$nmix$probdraw)[2] # number of components
 I <- dim(out$betadraw)[1] # number of individuals
 K <- dim(out$betadraw)[2] # number of parameters
 R <- dim(out$betadraw)[3] # number of draws
 if (is.null(post_index)) post_index <- 1:R
 if (is.null(coef_names)) coef_names <- paste0("par_", 1:K)
 # pop draws
 sdMat <- bMat <- array(NA, dim = c(R, K))
 corArray <- sigmaArray <- array(NA, dim = c(K, K, R))
 muArray <- array(NA, dim = c(R, K, C))
 sigArray <- array(NA, dim = c(K, K, R, C))
 for (r in 1:R) {
 moms <- momMix(out$nmix$probdraw[, r, drop = FALSE], out$nmix$compdraw[r])
 sigmaArray[, r] <- moms$sigma
 corArray[, r] <- moms$corr
 sdMat[r,] <- moms$sd
 bMat[r,] <- moms$mu
 for (c in 1:C) {
 rTemp <- out$nmix$compdraw[, r][[c]]$rooti
 sigArray[, , c] <- crossprod(chol(chol2inv(chol(tcrossprod(rTemp)))))
 muArray[, , c] <- out$nmix$compdraw[, r][[c]]$mu
 }
 }
 colnames(sigArray) <- rownames(sigArray) <- coef_names
 colnames(sigmaArray) <- rownames(sigmaArray) <- coef_names
 colnames(corArray) <- rownames(corArray) <- coef_names
 colnames(sdMat) <- colnames(bMat) <- colnames(muArray) <- coef_names

 # ind draws
 betaMat <- out$betadraw
 colnames(betaMat) <- coef_names

 return(list(b = bMat[post_index,],
 sd = sdMat[post_index,],
 Sigma = sigmaArray[, , post_index],
 Cor = corArray[, , post_index],
 beta = betaMat[, , post_index],
 loglike = out$loglike[post_index],
 muArray = muArray[post_index,],
 sigArray = sigArray[, , post_index],
 probdraw = out$nmix$probdraw[post_index,]))
}

trim <- function(x, prob = 0.01) {
 subset(x, x > quantile(x, probs = prob) & x < quantile(x, probs = 1 - prob))
}

Load data
load(Cracker) # Cracker data of Jain et al. (1994); included in the mlogit package

Load data
load(Cracker) # Cracker data of Jain et al. (1994); included in the mlogit package
Descriptives stats

number of consumers
(we exclude the first choice for each consumer later to initialize the 'lastchoice' variable)
cracker[cs != 1, uniqueN(id)]

number of choices for each consumer
n_choice_id <- cracker[cs != 1, .N, by = id]
describe(n_choice_id[, .(N)], fast = TRUE)

number of choices
(n <- n_choice_id[, sum(N)])

choices
cracker[cs != 1, table(choice)]

choice shares
cracker[cs != 1, round(table(choice) / .N, 3)]

prices (in $-Cent / oz => divided by 100 => $ / oz, see Jain et al. 1994)
describe(cracker[cs != 1, 10:13] / 100, fast = TRUE)

display (fraction of purchase occasions on display promotion for each brand)
describe(cracker[cs != 1, 2:5], fast = TRUE)

feature (fraction of purchase occasions on which each brand was featured)
describe(cracker[cs != 1, 6:9], fast = TRUE)

Data prep

build last choice variable and delete first choice (=> initialisation)
last_choice <- cracker[, .(id, cs = cs + 1L, lastchoice = choice)]
cracker <- merge(cracker, last_choice, by = c("id", "cs"))

reshape data to long format
cracker_long <- mlogit.data(cracker, id = "id", choice = "choice", varying = c(3:14),
shape = "wide", sep = ".")

transform last choice variable into dummy
cracker_long$lastchoice <- as.integer(cracker_long$last == cracker_long$alt)

divide price by 100 => $ / oz
cracker_long$price <- cracker_long$price / 100

make sure "private" is reference alternative in analyses
attr(cracker_long, "index")[["alt"]]<- relevel(attr(cracker_long, "index")[["alt"]], "private")

prep/reshape data for Bayesian estimation
M <- model.matrix(mFormula(choice ~ price + feat + disp + lastchoice),
data = cracker_long)
coef_names <- colnames(M)
cracker_hb <- NULL
for (i in unique(cracker_long$id)) {
cracker_hb[[i]] <- list(y = match(subset(cracker_long, id == i & (choice))[,"alt"],
cracker_long[1:4, "alt"]),
X = M[which(cracker_long$id == i),])
}

prep/reshape data for elasticity computation
cracker_elast <- NULL
for (i in unique(cracker_long$idchid)) {
M.i <- M[cracker_long$idchid == i,]
rownames(M.i) <- c("keebler", "nabisco", "private", "sunshine")
cracker_elast[[i]] <- M.i
}
DCM estimation

MNL

```r
# benchmark model: brand intercepts only
mnl0 <- gmnl(choice ~ 1, data = cracker_long)
(ll_0 <- logLik(mnl0))

# MNL model (mnl0 + price, feature, display and lastchoice as covariates)
mnl <- gmnl(choice ~ price + feat + disp + lastchoice, data = cracker_long)

# estimates
round(summary(mnl)$CoefTable, 3)

# LL
logLik(mnl)

# McFadden R^2
round(c(1 - logLik(mnl) / ll_0), 3)

# Price elasticity (average over all observations)
round(computeElast(cracker_elast, t(coef(mnl)))[,3]
```

Nested MNL

```r
nl <- mlogit(choice ~ price + feat + disp + lastchoice, data = cracker_long,
             nests = list(national_brands = c("keebler", "nabisco", "sunshine"),
                          store_brand = c("private")), un.nest.el = TRUE)

# estimates
round(summary(nl)$CoefTable, 3)

# LL
logLik(nl)

# McFadden R^2
round(c(1 - logLik(nl) / ll_0), 3)
```

LC MNL

```r
# We use different starting values here because LC MNL models can have several local optima.
# For each number of segments (2-6), we estimate the model using ten starting values
# and kept the run with the highest LL-value.
# The minimum BIC value was used to determine the optimal number of latent classes (here 5).
lc5 <- gmnl(choice ~ price + feat + disp + lastchoice | 1 | 0 | 0 | 1,
            start = c(-3.3, -2, -3, 1.3, 0.1, 0.5, 1, 1, 4, 0.3, -2, 1, 0.2,
                      1, -0.5, 2, -0.3, -11, -0.4, 0.5, 0.4, 1.5, 2, 1, -5, 1,
                      0.5, 0.7, 7, 6.5, 5.5, -8, 0, 0, 1, 1, 0.4, 0.4, -0.3),
            data = cracker_long, print.level = 1, model = "lc", Q = 5, panel = TRUE)

# estimates
round(summary(lc5)$CoefTable, 3)

# LL
logLik(lc5)

# McFadden R^2
round(c(1 - logLik(lc5) / ll_0), 3)

# latent class sizes (prior probs)
coef_class <- c(0, coef(lc5)[36:39])
names(coef_class) <- as.character(1:5)
prior_probs <- exp(coef_class) / sum(exp(coef_class))
round(prior_probs, 3)

# crisp segmentation based on max posterior probs
post_probs <- lc5$Qir
colnames(post_probs) <- as.character(1:5)
```
3 consumers as example
round(post_probs[c(7, 24, 33),], 3)

consumer assigned to latent classes
class_assignment <- apply(post_probs, 1, which.max)
table(class_assignment)

average posterior membership probability of assigned consumers
round(tapply(post_probs[cbind(1:136, class_assignment)], class_assignment, mean), 3)

individual coefficients
lc5_beta_i <- data.table(effect.gmnl(lc5)$mean)
ggplot(suppressWarnings(melt(lc5_beta_i)), aes(x = value)) +
 geom_histogram(bins = 10) + theme_minimal() + ggtitle("LC (5)") +
 facet_wrap(~variable, ncol = 4, scales = "free")

Price elasticities
round(computeElast(cracker_elast, t(lc5$bi[1,])), 3) # latent class 1
round(computeElast(cracker_elast, t(lc5$bi[2,])), 3) # latent class 2
round(computeElast(cracker_elast, t(lc5$bi[3,])), 3) # latent class 3
round(computeElast(cracker_elast, t(lc5$bi[4,])), 3) # latent class 4
round(computeElast(cracker_elast, t(lc5$bi[5,])), 3) # latent class 5

draws from the (point estimate of the) discrete population distribution
set.seed(1234)
lc5_beta_r <- lc5$bi[sample(1:5, 10000, prob = prior_probs, replace = TRUE),]
round(computeElast(cracker_elast, lc5_beta_r), 3) # aggregated (over all classes)

M-NL

mmnl <- gmnl(choice ~ price + feat + disp + lastchoice | 1, data = cracker_long,
 model = "mix1", correlation = TRUE, halton = NA, R = 1000,
 panel = TRUE, tol = 1e-12, print.level = 1,
 ranp = c('keebler:(intercept)' = "n",
 'nabisco:(intercept)' = "n",
 'sunshine:(intercept)' = "n",
 price = "n", feat = "n", disp = "n", lastchoice = "n"))

means of random parameters
round(summary(mmnl)$CoefTable[1:7,], 3)

standard deviations of the random parameters
vcov(mmnl, what = "ranp", type = "sd", se = TRUE, digits = 3)

correlations of random parameters
round(cor.gmnl(mmnl), 3)

LL
logLik(mmnl)

McFadden R^2
round(c(1 - logLik(mmnl) / ll_0), 3)

individual coefficients
mmnl_beta_i <- data.table(effect.gmnl(mmnl)$mean)
ggplot(suppressWarnings(melt(mmnl_beta_i)), aes(x = value)) +
 geom_histogram(bins = 10) + theme_minimal() + ggtitle("MMNL") +
 facet_wrap(~variable, ncol = 4, scales = "free")

Price elasticities
draws from the (point estimate of the) population distribution
set.seed(1234)
mmnl_beta_r <- rmvnorm(10000, coef(mmnl)[1:7], cov.gmnl(mmnl))
round(computeElast(cracker_elast, mmnl_beta_r), 3)
HB MNL (normal prior)
setup
R <- 200000 # draws
keep <- 100 # keep every 100th draw
post_index <- seq(1 + 0.5 * R / keep, R / keep) # index for posterior draws (50% warmup)

HB estimation
set.seed(1234)
hbmn1 <- rhierMnlRwMixture(Data = list(p = 4, lgtdata = cracker_hb),
 Prior = list(ncomp = 1), # default priors, 1 component
 Mcmc = list(R = R, keep = keep, nprint = R / 20))

reshape draws for easier handling
hbmn1_draws <- reshapeBayesmDraws(hbmn1, post_index, coef_names)

LMD
logMargDenNR(trim(hbmn1_draws$loglike))

means of random parameters
round(cbind(mean = apply(hbmn1_draws$b, 2, mean),
 t(apply(hbmn1_draws$b, 2, quantile, prob = c(0.025, 0.975)))), 3)

standard deviations of the random parameters
round(cbind(mean = apply(hbmn1_draws$sd, 2, mean),
 t(apply(hbmn1_draws$sd, 2, quantile, prob = c(0.025, 0.975)))), 3)

correlations of random parameters
round(apply(hbmn1_draws$Cor, c(1, 2), mean), 3)

individual coefficients
hbmn1_beta_i <- data.table(apply(hbmn1_draws$beta, c(1, 2), mean))
ggplot(suppressWarnings(melt(hbmn1_beta_i)), aes(x = value)) +
 geom_histogram(bins = 10) + theme_minimal() + ggtitle("HBMNL") +
 facet_wrap(~variable, ncol = 4, scales = "free")

Price elasticities
draws from the (posterior mean of the) population distribution
set.seed(1234)
hbmn1_beta_r <- rmvnorm(10000, apply(hbmn1_draws$b, 2, mean),
 apply(hbmn1_draws$Sigma, c(1, 2), mean))
round(computeElast(cracker_elast, hbmn1_beta_r), 3)

HB MNL (mixture of normals prior)
HB estimation
set.seed(1234)
hbmn3 <- rhierMnlRwMixture(Data = list(p = 4, lgtdata = cracker_hb),
 Prior = list(Amu = 1/10, ncomp = 3, a = rep(5/3, 3)),
 Mcmc = list(R = R, keep = keep, nprint = R / 20))

we use a slightly tighter prior for 'Amu' than the default setting,
because all variables are reasonable scaled (see Rossi et al. 2005, p. 150)

reshape draws for easier handling
hbmn3_draws <- reshapeBayesmDraws(hbmn3, post_index, coef_names)

LMD
logMargDenNR(trim(hbmn3_draws$loglike))

means of random parameters
round(cbind(mean = apply(hbmn3_draws$b, 2, mean),
 t(apply(hbmn3_draws$b, 2, quantile, prob = c(0.025, 0.975)))), 3)

standard deviations of the random parameters
round(cbind(mean = apply(hbmn3_draws$sd, 2, mean),
 t(apply(hbmn3_draws$sd, 2, quantile, prob = c(0.025, 0.975)))), 3)

correlations of random parameters
round(apply(hbmn3_draws$Cor, c(1, 2), mean), 3)
individual coefficients

```r
data.table(apply(hbmnl3_draws$beta, c(1, 2), mean))
ggplot(suppressWarnings(melt(hbmnl3_beta_i)), aes(x = value)) +
geom_histogram(bins = 10) + theme_minimal() + ggttitle("HBMNL(3)") +
facet_wrap(~variable, ncol = 4, scales = "free")
```

scatterplot: HB MBL (3) vs HB MNL

```r
hbmnl1_and_3_beta_i <- rbind(hbmnl_beta_i, hbmnl3_beta_i)
hbmnl1_and_3_beta_i[, model := rep(c("HB MNL", "HB MNL (3)"), each = 136)]
hbmnl1_and_3_beta_i[, id := rep(1:136, 2)]
```

```r
hbmnl1_and_3_beta_i <- melt(hbmnl1_and_3_beta_i, id.vars = c("model", "id"),
variable + id ~ model, fill = FALSE)
hbmnl1_and_3_beta_i[variable == "keebler:(intercept)", variable := "Keebler"]
hbmnl1_and_3_beta_i[variable == "nabisco:(intercept)", variable := "Nabisco"]
hbmnl1_and_3_beta_i[variable == "sunshine:(intercept)", variable := "Sunshine"]
hbmnl1_and_3_beta_i[variable == "price", variable := "Price"]
hbmnl1_and_3_beta_i[variable == "feat", variable := "Feature"]
hbmnl1_and_3_beta_i[variable == "disp", variable := "Display"]
hbmnl1_and_3_beta_i[variable == "lastchoice", variable := "Lastchoice"]
```

```r
ggplot(hbmnl1_and_3_beta_i,
aes(y = `HB MNL (3)`, x = `HB MNL`)) +
geom_point(size = 1, pch = 1) + theme_minimal() +
geom_abline(slope = 1, intercept = 0, col = "grey20") +
facet_wrap(~variable, ncol = 4, scales = "free") +
theme(text = element_text(family = "serif")) +
ylab(expression(paste(paste(beta)["i"], " HB MNL (3)"))) +
xlab(expression(paste(paste(beta)["i"], " HB MNL")))
```

Price elasticities

```r
# draws from the (posterior mean of the) population distribution
muc <- apply(hbmnl3_draws$muArray, c(2, 3), mean)
sigc <- apply(hbmnl3_draws$sigArray, c(1, 2, 4), mean)
pvec <- apply(hbmnl3_draws$probdraw, 2, mean)
comps <- list()
for (c in 1:length(pvec)) {
  comps[[c]] <- list(mu = muc[, c], rooti = solve(chol(sigc[, , c])))
}
```

```r
set.seed(1234)
hbmnl3_beta_r <- rmixture(10000, pvec, comps)$x
round(computeElast(cracker_elast, hbmnl3_beta_r), 3)
```

comparison of marginal distribution of the price coefficients

```r
price_draws <- melt(data.table("HB MNL" = hbmnl_beta_r[, 4],
"HB MNL (3)" = hbmnl3_beta_r[, 4]),
measure.vars = c("HB MNL", "HB MNL (3)"),
variable.name = "model", value.name = "beta_price")
```