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Causal Inference Using Mediation Analysis or
Instrumental Variables – Full Mediation in the Absence
of Conditional Independence
By Thomas Otter, Max J. Pachali, Stefan Mayer and Jan R. Landwehr

Both instrumental variable (IV) estimation and
mediation analysis are tools for causal infer-
ence. However, IV estimation has mostly de-
veloped in economics for causal inference
from observational data. In contrast, media-
tion analysis has mostly developed in psy-
chology, as a tool to empirically establish the
process by which an experimental manipula-
tion brings about its effect on the dependent
variable of interest. As a consequence, many
researchers well versed in IV estimation are
not familiar with mediation analysis, and vice
versa. In this paper, we discuss the common-
alities and differences between IV estimation
and mediation analysis. We highlight that IV
estimation leverages an a priori assumption
of full mediation for causal inference. In con-
trast, modern practice in mediation analysis
focuses on testing the statistical significance
of the indirect effect without too much regard
for the specification of the estimated model. A
drawback of this approach is that inferring
mediation from the statistical significance of a
(putative) indirect effect through the hypothe-
sized mediator may be spurious altogether.

We discuss specification issues and how they
relate to inference about mediation, and spe-
cifically to the distinction between full and par-
tial mediation. Based on this discussion we
argue in favor of further developing tests that
are more diagnostic about the underlying
causal structure, motivated by the implication
that full mediation could be more common
than currently believed.

1. Introduction

In this paper, we compare and contrast the assumptions
and goals of IV estimation and mediation analysis. Spe-
cifically, we investigate the relationship between full me-
diation at a causal theory level and what can be empiri-
cally observed in the data. This way we hope to sensitize
applied researchers to the ambiguity of what is common-
ly referred to as “partial mediation”. We argue that this is
important given the current trends in methodological and
empirical mediation research. In essence, the recent liter-
ature emphasizes statistical inference for indirect effects
based on bootstrapping procedures (e. g., Hayes 2013;
Preacher and Hayes 2004; Zhao et al. 2010) but essen-
tially assumes that mediation is the underlying causal
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Fig. 1: Mediation according to Baron and Kenny (1986)

model. We do not argue with the value of improving sta-
tistical inference for coefficients and functions of coeffi-
cients believed to be different from zero in a given, undis-
puted model. However, we believe that some of the origi-
nal appeal of mediation analysis is related to testing the
underlying causal model as in Baron and Kenny (1986).

The original test for mediation proposed by Baron and
Kenny (1986) builds on the connection between full me-
diation and conditional independence and tests condi-
tional mean independence. Their test rests on the follow-
ing set of regression equations, where t’s denote inter-
cepts (see also Fig. 1).

Yi = t1 + cXi + ε Y,i (1)

Mi = t2 + aXi + ε M,i (2)

Yi = t3 + c*Xi + bMi + ε Y,i
* (3)

The first equation regresses Y on the randomly assigned
experimental variable X. A statistically significant coeffi-
cient c establishes empirical support for the total effect
from X to Y (cf. Fig. 1, Panel A).[1] Because of random
assignment of X, the coefficient c necessarily measures a
causal effect. The second equation regresses M on X. A
statistically significant coefficient a establishes empirical
support for the effect from X to M that is again causal by
experimental design. The third equation regresses Y on
randomly assigned X and on observed M. Under the as-
sumptions of full mediation, the absence of measurement
error in M, and independence between ε M,i and ε Y,i

* , the
hypothesis that c* = 0 holds and b measures the causal ef-
fect from M to Y (cf. Fig. 1, Panel B). Usually, empirical
support for the hypothesis of c* = 0 is established based
on p-values larger than some subjectively chosen level α
(Baron and Kenny 1986).[2]

Baron and Kenny (1986) argued that empirical support
for c* = 0 is the “strongest demonstration of mediation”
(p. 1176) and that if the residual path c* ≠ 0, “this indi-
cates the operation of multiple mediating factors” (see al-
so Demming et al. 2017). While we agree with the con-
clusion that empirical evidence supporting c* = 0 is es-
sentially proof of mediation[3], we disagree with the
statement that a residual path c* ≠ 0 necessarily indicates
additional mediating factors. In fact, the main contribu-
tion of our paper is to highlight plausible data generating

mechanisms, including the empirically relevant case of
measurement error in the mediator, that give rise to c* ≠ 0
even though full mediation holds at a causal theory level.
Under these data generating mechanisms, standard medi-
ation analysis relying on Baron and Kenny (1986), or the
more modern variants of testing the statistical signifi-
cance of the indirect effect (Hayes 2013; Pieters 2017;
Preacher and Hayes 2004, 2008; Zhao et al. 2010) yield
biased inferences about the indirect effect. Thus, conclu-
sions about the presence and strength of mediation may
be misleading.

We view this as a first order concern and believe that the
current focus on statistically reliable estimates of indirect
effects (e. g., Hayes 2013; Rucker et al. 2011; Zhao et al.
2010) should be widened to include an assessment of the
underlying causal structure to the fullest extent possible.
In this context, it cannot be emphasized enough that a
statistically significant indirect effect is merely consis-
tent with mediation but may be obtained from model
structures without any mediation (see also Fiedler et al.
2011), such that what is estimated as a significant indi-
rect effect may in fact not be an indirect effect at all, but
reflecting other reasons for dependence between ob-
served variables. Hence, we argue for a careful assess-
ment of alternative models and for the development of
model comparison procedures that account for violations
of conditional independence between X and Y given ob-
served M that occur even if full mediation holds at a
causal theory level.

The remainder of the paper proceeds as follows. First, we
explain the relationship between full mediation – which
goes hand in hand with necessarily unbiased inference
for the indirect effect – and conditional independence,
and describe the conceptual link between full mediation
and IV estimation. Furthermore, we explain and show
why a correlation between the error terms of M and Y
will force any statistical procedure testing for conditional
independence to indicate only partial mediation although
full mediation is the data generating mechanism, while
simultaneously biasing inferences about the indirect ef-
fect. Second, we introduce the data generating mecha-
nism of true partial mediation and describe why true par-
tial mediation is not testable by statistical procedures.
Third, we exemplify how statistical procedures may spu-
riously point to partial mediation although the data were
not generated by a mediating process at all. Fourth, we
show that statistical procedures spuriously point to par-
tial mediation although full mediation was the data gen-
erating mechanism when the mediator is measured with
measurement error, while simultaneously biasing infer-
ences about the indirect effect again. Fifth, we introduce
a Bayesian test procedure for testing conditional inde-
pendence (i. e., full mediation) that can positively sup-
port this hypothesis. In contrast, standard testing based
on p-values can only fail to reject conditional indepen-
dence. Finally, we close with a discussion of our obser-
vations, recommendations for applications, and an out-
look towards future methodological developments.
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Fig. 4: Conditioning on the mediator M (directed acyclic graph)

Fig. 3: Instrumental variable (directed acyclic graph)

Fig. 2: Full mediation (directed acyclic graph)

2. Mediation and conditional independence

2.1. Full mediation and IV estimation

The just described classical mediation test by Baron and
Kenny (1986) is essentially a test of conditional (mean)
independence. That is, one tests whether X and Y become
independent of one another, once M is controlled for in
the third equation, i. e., if the effect of X on Y is zero con-
ditional on a fixed value of M. Intuitively, this is consis-
tent with all the effect from X onto Y going “through” M.
However, simple conditioning on observed values of M
in the data will only result in conditional independence
between X and Y under the additional assumptions of er-
ror free measurements of the mediator M and indepen-
dence between unobserved causes of M and Y.

The directed acyclic graph (DAG) that corresponds to
full mediation under these additional assumptions is de-
picted in Fig. 2. In a DAG directed arrows from one vari-
able to another indicate direct causal effects (see also
Rohrer 2018). The absence of a direct connection indi-
cates that two variables are only indirectly connected, if
at all. A causal effect in general means that manipulating
the cause (the variable at the origin of an arrow) will con-
sistently affect the consequence (the variable the arrow
points to).

The arrows connecting X to M and M to Y indicate direct-
ed causal effects. The arrows pointing to X, M, and Y
coming from Us indicate the influence of independent,
unobserved disturbances. The graph shows the data gen-
erating mechanism (i. e., the theoretical model) of full
mediation. Accordingly, we use β 1 and β 2 to denote the

theoretical causal pathways (cf. a and b, which we used
earlier to denote the empirical estimates of β 1 and β 2 un-
der the assumptions embedded in Fig. 2).

The DAG shows that an intervention that forces M to
take a particular fixed value blocks the link from X to Y,
such that manipulations of X no longer translate into Y-
changes. In addition, the DAG implies conditional inde-
pendence between X and Y given M, i. e., p(Y⏐X,M) =
p(Y⏐M). Conditional independence in the data generating
mechanism translates into a probability α to reject the
true Null hypothesis that the direct effect of X on Y con-
ditional on M equals zero. Moreover, it leads to a Bayes
factor supporting the model that excludes the direct ef-
fect from X to Y over the model that includes this effect.

In empirical applications, independence between UX and
{UM,UY} is guaranteed if X is subject to experimental
manipulation with random assignment to treatment con-
ditions. Independence between UM and UY is an assump-
tion (Imai et al. 2010a), just like the absence of a direct
effect from X on Y conditional on M, when assuming full
mediation. In this context, it is useful to compare the
DAG in Fig. 2 to the DAG that motivates IV estimation
depicted in Fig. 3.[4] The only difference to Fig. 2 is that
the unobserved background variables influencing M and
Y are no longer independently distributed. In other
words, there exist unobservables UM,Y that jointly affect
M and Y.

The DAG in Fig. 3 again shows that an intervention that
forces M to take a particular fixed value blocks the link
from X to Y, such that manipulations of X no longer
translate into Y-changes, i. e., full mediation. However,
the DAG in Fig. 3 no longer implies conditional inde-
pendence between X and Y given M, even if we can be
sure of the independence between UX and UM,Y as in an
experimental study that manipulates X with random as-
signment.[5] Fig. 4 depicts the consequences of condi-
tioning on M in this scenario graphically and points to
the reason for not observing conditional independence
although full mediation is the causal mechanism.

Conditioning on M = k is broadly speaking the same as
selecting all those combinations of X and UM,Y that yield
M = k in an infinite data set, leaving X and UM,Y depen-
dent once conditioned on M = k (the dashed, double-
headed arrow in Fig. 4 indicates this dependency). That
is, once M is fixed to a particular value k and a value of X
is selected, the value of UM,Y is not free to vary but direct-
ly dependent on X, and vice versa to be consistent with
M = k. In turn, this conditional dependence between X
and UM,Y gives rise to conditional dependence between X
and Y because UM,Y causes Y. As a consequence, any sta-
tistical procedure designed to test for conditional inde-
pendence between X and Y, including the regression ap-
proach proposed by Baron and Kenny (1986), will con-
sistently reject the (true) Null hypothesis that the direct
effect of X on Y equals zero even though the underlying
causal model in Fig. 3 implies full mediation via M.[6]
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Fig. 5: Results of a mediation analysis according to Baron and
Kenny (1986) for the simulated data in Section 2.1 violating

conditional independence

Fig. 6: IV estimation (directed acyclic graph)

Next, we provide a numerical illustration using a, com-
pared to usual experimental sample sizes, large simulated
sample (N = 2000) to showcase the consistent violation
of conditional independence that results from correlated
M and Y disturbances. We simulate X from a uniform dis-
tribution, generate M as M = int1 + Xβ 1 + UM with the in-
tercept term int1 = 1 and β 1 = 4. Y is defined as Y = int2 +
Mβ 2 + UY with int2 = 1 and β 2 = 0.5. Finally, the errors
UM,Y = (UM UY )� are dependently distributed according

to UM,Y � N( ` ,Σ) with ` � = (0 0), Σ =
⎛

⎝

σ M ρ
ρ σ Y

⎞

⎠
with

ρ = 0.5 and σ M = σ Y = 1.

Fig. 5 shows the results of analyzing the simulated data
according to Baron and Kenny (1986). Full mediation
according to Baron and Kenny (1986) requires statisti-
cally significant c = β 1 · β 2, which we find (ĉ = 2.001,
t(1998) = 19.857, p < .001), statistically significant a =
β 1, which we also find (â = 4.061, t(1998) = 53.125, p <
.001), and c* = 0 in the regression Y = t3 + Xc* + Mb + ε Y

*

which we strongly reject (ĉ* = –1.970, t(1997) = –18.766,
p < .001). In combination with b̂ = 0.978 (t(1997) =
49.433, p < .001), the conclusion could be “partial medi-
ation”. The significance of the (strongly biased) estimate
of the indirect effect seems to also support this conclu-
sion (the 95 % CI from 1,000 bootstrapped samples
ranges from 3.742 to 4.201 whereas the data generating
value is β 1 · β 2 = 2). However, at a causal theory level,
M fully mediates X ’s influence on Y and therefore an ex-
perimental procedure that fixes M would in fact fully
block the causal connection between X and Y. Also note
that under this DAG a is a consistent estimator of β 1, c is
a consistent estimator of β 1 · β 2, but b fails to consistent-
ly estimate β 2, which motivates IV estimation. Thus, as
already seen in our example, standard estimators yield
inconsistent estimates of the indirect causal effect from X
to Y, even though the total causal effect is only through
the indirect effect and can be estimated consistently. The
direction of the bias in b relative to the data generating
β 2 is a function of the error correlation ρ . For positive
(negative) ρ , b will be larger (smaller) than β 2, biasing
the inference about the indirect effect. At the same time,
c* will be biased upwards for ρ < 0 and biased down-
wards for ρ > 0 away from the data generating causal di-
rect effect from X to Y denoted as β 3. If the data generat-
ing β 3 is equal to zero as in a model with full mediation,
the results will misleadingly suggest “partial mediation”.

IV estimation “solves” the problem posed by correlated
unobservables UM,Y by assuming full mediation a priori.
IV estimation proceeds by replacing M by its consistent
estimate X · a = Xβ 1 (see Fig. 6). Regressing Y on a con-
sistent estimate of Xβ 1 then consistently estimates β 2 be-
cause Xβ 1 is orthogonal to UM,Y by construction. Note
that an alternative estimation approach could exploit the
relation between c = β 1 · β 2 and a = β 1 to obtain β 2 from
the ratio c/a. As we will show later, the assumption of
full mediation leveraged by IV estimation defies testing
which contrasts with the intent of mediation analysis.

A classical example is the estimation of price elasticities
from observational data in situations where unobserved
variables UM,Y (e. g., advertising) are strongly suspected
to connect price (M) to sales (Y) variation in the data.
Thereby, when regressing Y on M the pure, i. e., the di-
rect causal effect of an exogenous price change is con-
founded with the effects of the unobserved variables
UM,Y. As a consequence, this regression fails to consis-
tently estimate the effect of a price change forced upon
the system from outside of the system (e. g., a price-man-
ager independently changing the price of a product with
the goal of stimulating demand). Now, if there exists an
observed variable X like, for instance, the cost of product
ingredients that influences prices but does not have any
direct effect on sales (i. e., price fully mediates the effect
of cost of product ingredients on sales), it can serve to
isolate exogenous variation in price, i. e., X · a = Xβ 1 that
in turn identifies causal price effects (subject to function-
al form assumptions). That is, the portion of the variance
in price that is exclusively explained by cost of product
ingredients is used to infer the causal effect of price on
sales. In applications like this, in contrast to experiments,
independence between X (cost of product ingredients in
the example) and the unobserved variables UM,Y connect-
ing price and sales that complicate the inferential prob-
lem in the first place is an important assumption (e. g.,
Ebbes et al. 2016; Wooldridge 2010).[7]

Thus, IV estimation is predicated on assuming full medi-
ation a priori. This is because the regression of Y on Xβ 1

fails to estimate β 2 consistently, unless M fully mediates
X ’s causal influence on Y. In contrast, mediation analysis
aims at establishing evidence for mediation. The goal of
IV estimation is a consistent estimate of β 2. This esti-
mate enters “what-if” calculations that pertain to hypo-
thetical experimental manipulations of M, e. g., someone
“stepping into the system” and forcing, e. g., the prices in
the above example to take different values by deliberate,
independent management action. Somewhat in contrast,

Otter/Pachali/Mayer/Landwehr, Causal Inference Using Mediation Analysis or Instrumental Variables

44 MARKETING · ZFP · Issue 2 · 2. Quarter 2018



Fig. 7: Partial mediation (directed acyclic graph) Fig. 8: No mediation (directed acyclic graph)

mediation analysis focuses on measuring the indirect ef-
fect, i. e., the product of β 1 and β 2. However, while a
consistent estimate of β 1 is guaranteed in the context of
an experiment that randomly assigns X, consistent esti-
mates of β 2, and thus a consistent estimate of the indirect
effect, and of a potential direct effect are not guaranteed.
Obviously, biased inferences about the indirect effect and
a potential direct effect may mislead conclusions about
the (psychological) process by which X brings about its
effect on Y and bias the assessment of the precise theoret-
ical contribution and appropriateness of a given experi-
mental manipulation.

2.2. True partial mediation

It is instructive to compare Fig. 3 to a model with true
partial mediation (see Fig. 7). Obviously, stepping into
the system in Fig. 7 and fixing M to a particular value by
intervention no longer fully blocks the transmission from
X-manipulations to changes in Y. As another conse-
quence, X and Y will be dependent, even conditional on
M in data generated from this model. Importantly, the
model in Fig. 7 can rationalize any valid covariance ma-
trix of manipulated variable X and observed variables M
and Y. In other words, the theoretical model does not
make predictions that could be falsified based on data.
The model simply fits any pattern of empirical relation-
ships between the measured variables. What may be
somewhat surprising, however, is that the model in Fig. 3
is equally flexible and therefore empirically not distin-
guishable from the model in Fig. 7 based on observations
of X, M, and Y, even if X is randomly assigned.[8]

The intuition for the flexibility of the model in Fig. 3 is
that we can always adjust the estimated effect from M to
Y to perfectly account for the covariance between X and
Y, given the effect from X to M, while perfectly match-
ing the observed covariance between M and Y based on
the error covariance in the usual linear setting (see Ap-
pendix A.2 for a formal proof). The effect from X to M
only needs to rationalize the covariance between these
two variables. As a consequence, these two models that
differ fundamentally regarding the causal role of M can-
not be distinguished based on the covariance-matrix of
the manipulated variable X and observed variables M
and Y.

This equivalence further burdens IV estimation with un-
testable assumptions. It implies that the error covariance
induced by UM,Y and a possible direct effect from X to Y
cannot be jointly identified from the data. As a conse-
quence, IV estimation has to rely on the strong assump-
tion that the direct effect equals zero (i. e., full media-
tion). Although this assumption is not directly testable, it
is possible to conduct sensitivity analyses using different
informative prior assumptions about a potential direct ef-
fect (Conley et al. 2012; see Imai et al. 2010a, 2010b for
the analogous idea in the context of mediation analysis).
Muthén et. al (2016, p. 159) show how to conduct sensi-
tivity analysis of β 2 and β 3 for the influence of UM,Y us-
ing structural equation modeling and specifically the
software Mplus.

For researchers applying mediation analysis, the previ-
ous arguments imply that empirical results consistent
with partial mediation are difficult to interpret because
the DAG shown in Fig. 7 does not constrain the observed
covariance matrix between X, M, and Y in a way that
would unequivocally imply true partial mediation as the
data generating mechanism. Moreover, as we will show
in the following two sections, observed partial mediation
can be produced by very different mechanisms ranging
from completely spurious mediation due to a non-causal
relation between M and Y, to full mediation that is mis-
classified as partial mediation due to measurement error
in the mediator.

2.3. Seemingly partial mediation due to non-
causal relations

In this section, we show that the empirical results consis-
tent with partial mediation can occur even in the absence
of any mediation through M (i. e., seemingly partial me-
diation due to non-causal relations). In particular, delet-
ing the path from M to Y and adding a direct effect from
X to Y in Fig. 3 (see Fig. 8) yields yet another model that
is observationally indistinguishable from those in Fig. 3
and Fig. 7. However, this is a model without mediation.
If one were able to step into this system and fix M to a
particular value by intervention while experimentally
manipulating X, Y would change in the same way as
without the intervention that fixes M. Thus, in a scenario
with experimental control over M (i. e., moderation-of-
process design; Spencer et al. 2005) one would be able to

Otter/Pachali/Mayer/Landwehr, Causal Inference Using Mediation Analysis or Instrumental Variables

MARKETING · ZFP · Issue 2 · 2. Quarter 2018 45



Fig. 9: Example for mistaking mediator M and outcome Y

Fig. 10: Mediation with indicator variable m for unobserved
mediator M (directed acyclic graph)

provide direct evidence against mediation. However, in
the common measurement-of-mediation design this com-
plete lack of mediation cannot be diagnosed from the da-
ta. Applying, for instance, Baron and Kenny’s procedure
to data generated from this model will result in “partial
mediation”. And because, given the data, we can replace
UM,Y with a direct effect from M to Y in our theoretical
model without changing the fit to the empirical data, the
estimated “indirect effect” (i. e., product of the path from
X to M and from M to Y) will be significant given a suffi-
ciently strong (conditional) covariance between M and Y
induced by UM,Y. In fact, there are more causal structures
that produce statistical results consistent with “partial
mediation” where the hypothesized M does not function
as a mediator at all, including the situation in which the
analyst mistakes the mediator M for the dependent vari-
able Y (see also Fiedler et al. 2011; Pieters 2017).

We numerically illustrate this problem by generating data
from the model in Fig. 2 and mistaking M for Y and vice
versa in the analysis. We consider the same numerical
setting as in the previous illustration before in Section 2.1
but set ρ = 0 such that the errors UM and UY are indepen-
dently distributed. We then relabel the original M to “Y”
and the original Y to “M”. Applying the Baron and Ken-
ny steps, we find evidence for partial mediation, indicat-
ed by a significant total effect of ĉ = 4.061 (t(1998) =
53.125, p < .001) from X on “Y”, a significant effect of â
= 1.962 (t(1998) = 22.795, p < .001) from X on “M”, and
finally a significant direct effect ĉ* = 3.326 (t(1997) =
42.739, p < .001) from X on “Y” conditional on “M”. In
combination with significant b̂ = 0.374 (t(1997) =
20.779, p < .001) the conclusion could be “partial media-
tion”, again supported by a significant indirect effect
with a bootstrapped 95 % CI ranging from 0.644 to
0.829. However, stepping into the system and experi-
mentally fixing “M” (actually Y) to a particular value of
course does not affect the causal transmission from X to
“Y” (actually M) at all. Note that conditional indepen-
dence between Y and X given M of course holds, when
we retain the correct labeling of the variables (see Fig.
9b). Regressing Y on X and M using the correct labeling
of the variables, we obtain b̂ = 0.475 (t(1997) = 20.779, p
< .001) while ĉ* = 0.034 (t(1997) = 0.281, p = 0.779) is
not statistically different from zero. The bootstrapped
95 % CI of the indirect effect ranges from 1.735 to 2.112
and contains the data generating value β 1 · β 2 = 2.

2.4. Seemingly partial mediation due to full
mediation with measurement error in M

We next discuss another, and we believe practically im-
portant situation that results in observed conditional de-
pendence even though full mediation holds at a conceptu-
al, theory level – seemingly partial mediation produced
by full mediation with measurement error in M. When the
mediator M is not directly observed but only an indicator
variable m subject to measurement error ε m (see Fig. 10),
conditioning on m leaves X and Y dependent, despite full
mediation by M.[9] As a consequence, standard media-
tion analysis relying on Baron and Kenny (1986), includ-
ing the modern variants of testing the significance of di-
rect and indirect effects (e. g., Hayes 2013; MacKinnon
et al. 2002; Preacher and Hayes 2004; Zhao et al. 2010),
will consistently reject the hypothesis of full mediation,
and produce results consistent with partial mediation.[10]
We numerically illustrate this in Section 3.

The intuition for conditional dependence is relatively
simpler in this case. Think again about the hypothetical
possibility of stepping into the system and fixing m to a
particular value by some experimental intervention. For
instance, one could instruct participants to only report a
particular fixed value when asked about m (e. g., partici-
pants could be asked to always answer “5” on a 7-point
scale when asked about m). Under the assumption that
this “superficial” instruction acts upon m only (i. e., it
simply decouples m from M and ε m), fixing m by experi-
mental means does not interfere with the causal pathway
from X via M to Y at all. Conditioning on m = k in ob-
served data selects combinations of X, UM, and ε m that
are consistent with m = k. However, as a consequence,
conditioning on m does not fix the value of M. Therefore,
X and Y are still connected in the observed data through
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(residual) variation in M. In addition, regressing Y on m
will fail to consistently estimate β 2, because the mea-
surement error increases the variance in m unrelated to Y.
Thus, common estimators and tests of indirect effects
will yield biased results (see also Pieters 2017). The na-
ture of the bias is such that b is biased towards zero. As a
consequence the product a · b is biased towards zero too.
Thus, the indirect effect will be underestimated (in abso-
lute terms) and may not be detected at all. At the same
time, c* will be biased upwards for β 1 · β 2 > 0 and biased
downwards for β 1 · β 2 < 0 away from the data generating
causal direct effect β 3. If the data generating β 3 is equal
to zero as in a model with full mediation, the results will
misleadingly suggest “partial mediation”. However, if
one knew about full mediation in this instance a priori, a
consistent estimate of β 2 could be obtained using IV esti-
mation in this example, or from the ratio c/a (where c is a
consistent estimator of the total effect β 1 · β 2 obtained by
regressing Y on X, and a a consistent estimator of β 1 ob-
tained by regressing m on X).

In contrast to the models discussed earlier, the model in
Fig. 10 imposes constraints on the set of covariance ma-
trices it can rationalize despite the fact that it features the
same number of parameters to estimate. Intuitively, the
effect from X to m (via unobserved M) fits Cov(X, m), the
product of effects from X to M and from M to Y rational-
izes Cov(X, Y). Finally, Cov(m,Y) is a function of the for-
mer effects and increasing in Var(UM). However, because
Var(UM) is bounded from below at zero, it cannot ac-
count for the influence of all direct effects from X to Y
that are not included in this model. The constraint is most
straightforwardly illustrated algebraically in comparison
to the the standard IV setup that features unobservables
UM,Y connecting M and Y (see Appendix A.3 for the alge-
braic details).

To illustrate the failure of the model with measurement
error in Fig. 10 to perfectly match the models in Figures
3 and 7, we generate observable covariances Cov(X, M),
Cov(X, Y), and Cov(Y,M) as implied by the IV model in
Fig. 3 using the same numerical specifications for pa-
rameters as before. We systematically vary the covari-
ance of the error disturbances, ρ , in the interval (–1,1) to
investigate whether the measurement error model shown
in Fig. 10 is able to explain the observed covariances for
any valid specification of ρ . We find that the measure-
ment error model can only explain the observed covari-
ances for ρ ∈ (–0.5,0). For ρ < – 0.5, the measurement
error model would require Var(UM) < 0, and for ρ > 0 we
would need Var(ε m) < 0. These constraints make full
mediation subject to measurement error a testable hy-
pothesis relative to the unconstrained models of Figures
3 and 7.

3. Testing full mediation via conditional
independence using Bayes Factors

Our discussion of data generating mechanisms exposes
the ambiguity of observed results that are consistent with
partial mediation. Such results may be obtained in situa-
tions where there is no mediation altogether and in situa-
tions where the hypothesis of full mediation actually
holds at a causal theory level (i. e., seemingly partial me-
diation). In contrast, evidence for conditional indepen-
dence between X and Y given M, of course assuming em-
pirical support for a path from X to M and for a total ef-
fect from X to Y essentially constitutes evidence for full
mediation, under randomly assigned X. This is because
conditional independence would only result in very par-
ticular, essentially zero probability circumstances from
models where full mediation is not the causal mechanism
at work (e. g., a perfect balance between the influence of
correlated disturbances UM and UY and a direct effect
from X on Y). Thus, strong evidence for conditional inde-
pendence jointly rules out unobservables UM,Y connect-
ing M and Y, a direct effect from X to Y, and material
measurement error in M. In addition, our results suggest
that the hypothesis of full mediation at a causal theory
level (i. e., the absence of a direct path from X to Y) may
be testable in the context of measurement error. Due to
the high epistemic value of showing full mediation, we
next illustrate Bayes Factors as an advantageous means
to probe into the degree of empirical support for condi-
tional independence.

Specifically, a drawback of relying on p-values in the
context of mediation analysis is that their distribution
across repeated samples under the Null-hypothesis is by
construction uniform and independent of the sample size.
As a consequence, the probability of rejecting a true c* =
0 based on a sample is always equal to α before sam-
pling the data and does not decrease with increasing sam-
ple size.[11] Model comparisons using Bayes Factors do
not suffer from this problem but can instead provide
stronger evidence in favor of the true Null hypothesis the
larger the sample size. From the Bayesian perspective, a
test of c* = 0 is based on the comparison between two
models – one with a dogmatic prior satisfying p(c* = 0) =
1 (M0) and another one with a non-degenerate, proper
prior for c* (M1) in Equation 3. The Bayes Factor mea-
sures the relative evidence for M0 over M1 given ob-
served data y (see, e. g., Rossi et al. 2005):

BF =
p(M0⏐y)
p(M1⏐y)

(4)

The quantity p(M⏐y) is proportional to the product of the
so called marginal likelihood p(y⏐M) and the subjective
prior probability p(M) assigned to a model. For uniform
p(M), the Bayes Factor equals the ratio of marginal like-
lihoods. The marginal likelihood is defined as the (nor-
malized) likelihood function integrated with respect to
the prior distribution. For the linear regression models in
Equations 1–3, the Bayes Factor can be easily and reli-
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 Prob(BF>3) Prob(BF>20) Prob(BF>100) 

N=50 0.943 0.045 <0.001 

N=200 0.970 0.708 <0.001 

N=2000 0.990 0.927 0.434 

 Prob(p-value>0.01) Prob(p-value>0.05) Prob(p-value>0.1)

N=50 0.995 0.958 0.898 

N=200 0.986 0.944 0.889 

N=2000 0.989 0.944 0.898 

Fig. 11: Distribution of Bayes Factors testing the direct effect of X
on Y after controling for M for different sample sizes in the

sampling experiment. (The black vertical line at BF = 3 depicts the
frontier for positive evidence in favor of M0)

Tab. 2: Replicated testing of
c* = 0 with 1000 replications
using Bayes Factors

Tab. 1: Replicated testing of
c* = 0 with 1000 replications
using p-values

ably computed using the Savage-Dickey density ratio
(see, e. g., Rossi et al. 2005):

BF =
p(c*⏐y)
p(c*) c*=0 =

� p(c*⏐y,σ y*)p(σ y*⏐y)dσ y*

� p(c*⏐σ y*)p(σ y*)dσ y* c*=0

=
�σ y*⏐y [p(c*⏐y,σ y*)]

�σ y*
[p(c*⏐σ y*)] c*=0

(5)

Here, p(c*⏐y,σ y*) is the conditional posterior distribution
of c* that is known in closed form for this model when
using the standard conjugate normal/inverse gamma
(NIG) priors. p(c*⏐σ y*) denotes the conditional prior dis-
tribution for c*.

The bayesm-package (Rossi 2017) for the statistical
software R includes two Bayesian regression routines.
The runireg function of the bayesm-package (Rossi
2017) works with the fully conjugate prior as alluded to
here. With this prior, the marginal posterior p(c*⏐y) can
be computed in closed form. Alternatively, the runi-
regGibbs function of the same package works with the
conditionally conjugate prior, where a closed form solu-
tion for p(c*⏐y) is not available. No matter which of the
two functions one uses, Bayes Factors (BFs) are easily
and accurately approximated based on a sample of length
R from the posterior distribution as follows: [12]

BF ≈
1/R r=1

RΣ p(c*⏐y,σ y*
r )

1/R r=1
RΣ p(c*⏐σ y*

r ) c*=0
(6)

Intuitively, the ability of the Bayes Factor to increasingly
strongly support a true Null c* = 0 in larger samples
comes from how the posterior p(c*⏐y) concentrates at 0
in larger samples relative to the prior distribution p(c*).
Also note that this Bayes Factor will consistently reject a
wrong Null hypothesis (i. e., when c* ≠ 0 the Bayes Fac-
tor will approach zero with increasing sample size), be-
cause the posterior support at the value zero converges to
zero in this case. In contrast, the p-value is fundamental-
ly asymmetric. It will increasingly reliably reject the
Null hypothesis if it is in fact false, as a function of the
sample size. However, as already mentioned, the proba-
bility of rejecting a true Null hypothesis is constant and
equal to α , regardless of the sample size. By convention,
Bayes Factors larger 3 count as weak but sufficient evi-
dence in favor of the model in the numerator; Bayes Fac-
tors larger 20 count as strong evidence (Kass and Raftery
1995).

Next, we illustrate the differences between the classical
and the Bayesian approach in the context of c* = 0 using
a sampling experiment. We first consider the case of full
mediation as in Fig. 2. Accordingly, we set t2 = t3 = 1, a =
4, c* = 0, b = 0.5, and σ M = σ Y* = 1 in Equations 2 and 3,
and generate artificial data sets of different sizes: N1 =
50, N2 = 200 as well as N3 = 2000.[13] We conduct 1000
replications for each data set size.

Fig. 11 illustrates the distribution of estimated Bayes
Factors over the 1000 simulation replications testing the
hypothesis of c* = 0, which follows from conditional in-
dependence that in turn is implied by full mediation sub-
ject to the additional assumptions discussed earlier.[14]
The results in Fig. 11 verify that the Bayes Factor cor-
rectly favors M0 over M1 for the vast majority of sam-
pling replications. Importantly, this figure also illustrates
that the Bayes Factor provides increasingly stronger evi-
dence for M0 (i. e., c* = 0) as the sample size increases.

The classical testing framework based on p-values fails
to measure the strength of evidence in favor of c* = 0. In
line with how they are defined, p-values are uniformly
distributed over sampling replications in the interval of
(0,1) (see Tab. 1). The probability of observing a p-value
smaller than the specified significance level α is equal to
this level and independent of sample size. In contrast, the
probability of obtaining a Bayes Factor larger than 20 in
support of c* = 0 increases in N and, for example, ap-
proaches one for N = 2000 (see Tab. 2).
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 Bayes Factor p-Value 

N=50 4.660E+00 1.085E-01 

N=200 7.982E-01 5.019E-03 

N=2000 4.110E-18 2.932E-21 

Tab. 3: Comparing Bayes Fac-
tors and p-values testing the
direct effect of X on Y after
controlling for M measured with
error for different sample sizes

In contrast, when the data generating process implies c* ≠
0, for any of the many reasons discussed earlier, p-values
and Bayes Factors work essentially in the same way. To
illustrate the problem of detecting the true data generat-
ing process when c* ≠ 0, consider the same data generat-
ing process as described in Fig. 10, where conditional in-
dependence is violated because of measurement error in
the mediator. Thus, we assume that the researcher only
observes m which measures M up to an error term ε m

(σ m = 1). Otherwise we retain the same data generating
values as in the earlier example. Thus, this simulation
again serves to illustrate an instance, where full media-
tion at a causal theory level holds despite a lack of condi-
tional independence and therefore c* ≠ 0.

Tab. 3 compares Bayes Factors and p-values for three ar-
tificial data sets with 50, 200 and 2000 observations,
each generated based on the data generating process with
measurement error presented in Fig. 10. Although the
data generating mechanism implies full mediation via M,
the statistical hypothesis of conditional independence be-
tween X and Y given m is rejected using p-values or Bay-
es Factors once the signal in the data as a function of the
sample size is sufficiently strong. Only if the sample size
(i. e., N = 50) and, thus, the power of the analysis is com-
parably small, both approaches fail to reject the Null hy-
pothesis that c* = 0. That is, the Bayesian approach finds
(weak) positive support (indicated by a Bayes Factor
larger than 3) for the more parsimonious model that re-
stricts c* to be zero. Similarly, the classical test approach
also fails to reject the Null hypothesis (p > .10). Howev-
er, for larger samples both approaches reject the Null hy-
pothesis of conditional independence (i. e., c* = 0) and
point to “partial mediation”. A result that per se is too
ambiguous to provide theoretical guidance, especially in
situations where one would have strongly expected full
mediation based on theory. Hence, a drawback of cur-
rently popular testing procedures is that they do not dis-
tinguish between reasons for failing conditional indepen-
dence with implications for the validity of the estimated
indirect effect.

4. Discussion

Both IV estimation and mediation analysis are heavily,
and sometimes mechanically used in empirical research.
In fact, mediation analyses have become almost manda-
tory for successfully publishing papers in top consumer
behavior (Pieters 2017) or social psychology journals
(Fiedler et al. 2011). While the literature on IV estima-
tion has been emphasizing the underlying (causal) as-
sumptions quite a bit (e. g., Reiss and Wolak 2007), an
extensive discussion of causal assumptions for mediation

analysis only started more recently (Imai et al. 2010a,
2010b; Pearl 2014; Pieters 2017). More specifically, the
current methodological literature on mediation analysis
heavily focuses on improving statistical inference for es-
tablishing indirect effects (e. g., Hayes and Preacher
2014; Hayes and Scharkow 2013; MacKinnon et al.
2002; Preacher and Hayes 2008; Zhao et al. 2010) with-
out delving into the required assumptions for interpreting
these effects as actually indirect, i. e., causal effects.

We emphasized that the key to understanding the notion
of full mediation at a causal theory level are hypothetical
experimental interventions that force the mediator to take
a particular value thereby blocking the causal pathway
between X and Y (Pearl 2009). The moderation-of-pro-
cess design introduced by Spencer et al. (2005) essential-
ly implements this idea advocating designs that both ma-
nipulate, and randomly assign X and M, i. e., force M to
take different values (at least in expectation) by design.
While we very much agree with this idea, we believe that
measurement-of-mediation designs (Spencer et al. 2005)
proposed by Baron and Kenny (1986), i. e., designs in
which the hypothesized mediator is not subject to experi-
mental manipulation but simply observed, will continue
to play an important role. We then discussed and clarified
the relationship between observable aspects of the data,
often taken to be diagnostic of the underlying process,
and the underlying causal process, and in particular the
relationship between conditional independence and full
mediation.

Extending our technical discussion of the merits of full
mediation, we would now like to point to the epistemic
and applied advantages of a complete process under-
standing (i. e., full mediation). Specifically, the goal of
mediation analysis is to shed light on the process by
which experimentally manipulated X brings about an ef-
fect on Y. An intuitive understanding of what can be ac-
complished in principle based on a better process under-
standing comes, for instance, from medical science. Sup-
pose that a scientist managed to identify the mechanism
in the nervous system (M) that translates physical harm
(X) into subjective feelings of pain (Y). Such a process
understanding would enable the scientist to develop an-
esthetic drugs that prevent feelings of pain in the pres-
ence of physical harm. In other words, the process under-
standing enables the identification of a moderator that
prevents an effect from occurring. Importantly, the anes-
thetic drugs are likely to work only if the scientist
achieved a complete process understanding (i. e., full
mediation). If unidentified parallel pathways exist that
pass on the signal triggering the pain (i. e., partial media-
tion), the anesthetic drugs will not work effectively. This
example illustrates how an incomplete theoretical under-
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standing of the mediating process is considerably less
useful when planning interventions. We therefore argue
that evidence supporting full mediation at a causal theory
level should be the goal of, if not the yardstick for re-
search aimed at establishing process knowledge. Further-
more, we conjecture that the goal of empirically estab-
lishing full mediation might have become to appear be-
yond reach because of an overreaching interpretation of
finding c* ≠ 0 in empirical applications.

Specifically, we showed that there are data generating
mechanisms that are plausibly at work in many empirical
settings, where full mediation holds at a causal theory
level. However, a test of (full) mediation built on condi-
tional independence between X and Y given M may con-
sistently reject the Null hypothesis that c* = 0, even if full
mediation holds at a causal theory level. In addition,
standard estimates of indirect effects are biased when ap-
plied to data generated from these models. Therefore, the
focus on statistically reliable estimation of the (putative)
indirect effect fails to resolve the underlying specifica-
tion problem.

One such model is the DAG shown in Fig. 3 that moti-
vates IV estimation, where unobserved variables connect
the disturbances UM and UY. Imai et al. (2010b) use the
experiment by Nelson et al. (1997) as an exemplary illus-
tration. In this experiment, the manipulated X variable
(message framing in a local news story: Ku Klux Klan
rally as a free speech issue vs. Ku Klux Klan rally as a
disruption of public order) has an effect on the dependent
variable Y (tolerance for the Ku Klux Klan) that is medi-
ated by a variable M (perceived importance of free
speech/public order). However, the mediator M and the
dependent variable Y are likely related over and above a
putative causal link transmitting the effect of the experi-
mental manipulation X to the dependent variable Y. Imai
et al. (2010b) refer to general political attitudes or social-
ization that may connect M and Y beyond the causal link.
Hence, because the mediator is not experimentally ma-
nipulated, some of the (residual) variation in M after con-
ditioning on X (i. e., UM) likely originates from general
political attitudes that are also reflected by the tolerance
for the Ku Klux Klan (Y). In other words, general politi-
cal attitudes may act as an unobserved background factor
to both M and Y. Imai et al. (2010b) propose sensitivity
analysis of the mediation results to the level of depen-
dence between M and Y from unobserved joint causes.
The need to resort to sensitivity analyses arises because
the IV DAG (Fig. 3) and the partial mediation DAG
(Fig. 7) are observationally indistinguishable without ad-
ditional assumptions.

We note that unobserved substantive background factors
may be more likely a priori in some studies than in oth-
ers. Studies like the experiment by Nelson et al. (1997),
where participants have a strong a priori predisposition
to answer the questions measuring mediator and depen-
dent variable in a particular way given their opinions, are
likely to be affected by an unobserved connection be-

tween the disturbances UM and UY. In contrast, studies
that use a priori meaningless stimuli like, e. g., abstract
visual patterns that need to be evaluated conditional on
some experimental manipulation (e. g., Graf and Land-
wehr 2017), are less likely to suffer from unobserved
connections between the disturbances UM and UY. For
example, a study that manipulates the frequency of expo-
sure to unknown Chinese characters (X) and measures
whether the effect of mere exposure on liking of the
characters (Y) is mediated by processing fluency (M) is
unlikely to be affected by substantive unobserved back-
ground factors connecting fluency M to liking Y (for an
example, see Landwehr et al. 2017).

However, a different reason for rejecting conditional in-
dependence despite full mediation at a causal theory lev-
el that seems generally important is measurement error in
the mediator (see also Baron and Kenny 1986; Pieters
2017). For example, the described study on processing
fluency as a mediating variable likely suffers from mea-
surement error in M, simply because one cannot measure
a cognitive mechanism like processing fluency directly
but has to rely on appropriate measurement scales (Graf
et al. in press). While measurement error in the mediator
will cause the consistent rejection of conditional inde-
pendence and bias estimates of the indirect effect, it is
not observationally equivalent to a model with partial
mediation or the IV model, as we have shown. We there-
fore believe that it will be useful to develop tests using
the framework of Bayesian model comparisons that
quantify the evidence supporting full mediation in the
context of measurement error relative to a model that
does not constrain observed covariances at all (i. e., true
partial mediation or the IV model). Bayesian model com-
parisons are called for because the model with measure-
ment error in the mediator features the same number of
parameters as the IV model or the partial mediation mod-
el when the mediator is measured with a single indicator.
The constraints embedded in the model with measure-
ment error are ordinal and thus hard to assess using non-
Bayesian inference.

In addition, there is scope for meaningful model compar-
isons based on theoretically motivated sign constraints.
For example, if a researcher or a reviewer names a poten-
tial omitted background factor connecting M to Y, he will
very likely (and should) be able to a priori sign-constrain
the influence of this background factor (i. e., positive
versus negative relationship). Say, the omitted back-
ground factor contributes positively to the observed co-
variance between M and Y. Upon building the sign con-
strained correlation between disturbances into the model,
the sign-constrained IV DAG, for example, may no lon-
ger be able to rationalize a positive direct effect from X
to Y. Remember that the effect from X to M (β 1 in the
DAGs) essentially captures the covariance between these
two variables. Further assume that this effect is positive
and in line with theory. When we do not allow for a di-
rect effect from X to Y in the model, the directed connec-
tion between M and Y (i. e., β 2) will adjust to reproduce
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the covariance between X and Y. If this covariance is large
because of a direct effect that is not accounted for in the
model, β 2 will be too large vis-a-vis the observed covari-
ance between M and Y, and only negative dependence
between UM and UY could compensate for this. However,
negative dependence between UM and UY is ruled out by
the a priori assumptions about the relation which in turn
makes the absence of a positive direct effect from X onto
Y a testable proposition. What is required here is, on the
one hand, a priori theory to sign-constrain the directed
effects and the potential dependence between UM and UY,
which should be easy to come by for researchers that are
actually looking to corroborate a process explanation and
not just fishing for one. On the other hand, one needs es-
timation routines that accommodate prior sign con-
straints and suitable measures for model comparisons.
Even though this requires substantial additional develop-
ment efforts, the Bayesian approach, in principle, accom-
modates these technical requirements.

Extending this call for the development of more power-
ful testing procedures, we believe that the practice of me-
diation analysis that is aimed at establishing positive evi-
dence for a process explanation will benefit from the for-
mulation of additional testable hypotheses. In particular,
the empirical observation of “partial mediation” requires
further examination of the underlying data generating
process instead of instantly triggering a chase for addi-
tional mediators because, as we have shown, an empiri-
cal pattern consistent with partial mediation can be due
to multiple DAGs and incorrect causal inferences are
likely to occur.

In this regard, we also believe that the goal for a useful
process based explanation is full mediation at a causal
theory level. However, while conditional independence
between X and Y given M is a powerful affirmative indi-
cation of full mediation, at least when obtained in large
samples and with X randomly assigned, there are a num-
ber of reasons for failing to observe conditional indepen-
dence, even if full mediation holds at a causal theory lev-
el. We have clarified some, we believe plausible, reasons
for this to occur. It remains an empirical issue to show
that the hypothesis of full mediation can, for example, be
supported once measurement error in the mediator is ac-
counted for.

5. Recommendations and Limitations

Given the ambiguous nature of an empirical result con-
sistent with partial mediation, what should a researcher
now do different from claiming a significant indirect ef-
fect and additional, unobserved mediators in applications
that yield a “partial mediation” result? Before the Bayes-
ian model comparisons we advocate in our discussion
become available, we suggest that researchers probe into
the plausibility of alternative causal structures before ad-
vancing their favorite interpretations. There are several
ways to do this. A simple approach is to take the ob-

served variance-covariance matrix of {X,M(m),Y} (we
use the notation M(m) to indicate the likely uncertainty
about the measurement quality of the mediator) and to
solve for the parameters in alternative models, notably
the IV model and the model with measurement error in
the mediator, under the assumption of full mediation at a
causal theory level (β 3 = 0), see Appendices A2. and
A.3.

In applications where unobservables UM,Y seem likely a
priori, it should be useful to see how large the error cor-
relation needs to be for the direct effect to become zero,
and how much the estimate of β 2 and thus the conclusion
about the indirect effect change. A more elegant way to
do this is use structural equation modeling software. For
example, Muthén et. al (2016, p. 159) show how to ana-
lyze the sensitivity of b̂ as an estimate of β 2 and ĉ* as an
estimate of β 3 against different levels of error correla-
tions induced by UM,Y.

In applications where measurement error in the mediator
is a likely concern, the sign of ĉ* relative to the sign of â ·
b̂ can be used to heuristically assess the possibility of full
mediation subject to measurement error. Because mea-
surement error in the mediator biases b̂ towards zero, the
bias in ĉ* will be positive for positive â · b̂ and negative
for negative â · b̂. Therefore, a negative ĉ* in combination
with positive â · b̂, for example, cannot be reconciled
with full mediation subject to measurement error. And
again, one can use the covariance algebra in Appendix
A.3 or structural equation modeling software to solve for
the parameters in a model with measurement error under
the assumption of full mediation at a causal theory level,
and check if i) all variance terms are positive and if ii)
the estimated amount of measurement error appears rea-
sonable.

The goal of this paper was to re-emphasize the topic of
model specification in the context of mediation analysis
and to highlight the ambiguous nature of results that are
consistent with partial mediation, both with respect to the
existence of a direct causal effect and with respect to cor-
rect inference about the indirect effect. While none of our
individual results are genuinely new, they are often only
discussed on the side or as “special topics” in application
oriented discussions of mediation analysis. In contrast,
the identifiability of causal (“actual”, “real”) effects and
thus model specification are central topics in the newer,
more technical literature on causal inference in media-
tion analysis. With this article we hope to contribute to
the acute awareness of model specification issues in the
wider community of researchers that rely on mediation
analysis for their substantive research.

Finally, we have deliberately concentrated on the sim-
plest case of three variables X, M (or m), and Y in this pa-
per to keep the arguments as simple and straightforward
as possible. However, model specification is at least
equally important in the context of, for example, multiple
mediators, moderated mediation, or multiple indicator
measurement.
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# NOTE: We first simulate data assuming full mediation.

# Set seed (i. e., make results reproducible).

set.seed(77)

# Data generating function: M fully mediates X

simMediation = function(beta_1,beta_2,int_1,int_2, sigma_M, sigma_Y,N,X) {
  eps_M = rnorm(N)*sigma_M^.5 # generate errors for M (independent)

  eps_Y = rnorm(N)*sigma_Y^.5 # generate errors for Y (independent)

  M = int_1 + beta_1 * X + eps_M # generate latent mediator M

  Y = int_2 + beta_2 * M + eps_Y # generate dependend variable

list(X = X, M = M, Y = Y) 
}

# Set up data generating parameters

N = 2000 # number of observations

sigma_M = 1 # error variance M

sigma_Y = 1 # error variance Y

beta_1 = 4 # beta_1 (i. e., parameter a according to Baron & Kenny)

beta_2 = .5 # beta_2 (i. e., parameter b)

int_1 = 1 # intercept for equation M on X

int_2 = 1 # intercpt for equation Y on M

X = runif(N) # generate random X from a uniform distribution

Notes

[1] Some authors argue that a total effect different from zero is
not required for mediation analysis to be valid (see e. g., Ru-
cker et al. 2011; Zhao et al. 2010). At a conceptual level, we
disagree because perfect cancellation between multiple
paths is an event of measure zero, i. e., has zero prior proba-
bility under any non-degenerate continuous prior distribu-
tion for parameters. However, if a researcher hypothesizes
the possibility of a near zero effect because of, say, two indi-
rect paths of opposing signs a priori, and the small total ef-
fect fails statistical significance in a given sample, the re-
searcher should of course proceed with the analysis. In con-
trast, the results of a search for mediators after finding a non-
significant total effect should be interpreted cautiously, un-
less full mediation can be established in this search.

[2] Furthermore, evidence for c ≠ 0 and for a ≠ 0 implies that
b ≠ 0 under these assumptions. This is because both c and a
are measures of causal effects and b = 0 would contradict the
existence of an effect already established under this set of as-
sumptions.

[3] In the limit of an infinite amount of data, the estimate of c*

will only converge to exactly zero under full mediation. The
only alternative process that yields c* = 0 in the limit features
M as a joint cause of X and Y without another connection be-
tween X and Y. This process is ruled out a priori, when X is
experimentally manipulated.

[4] Because of the focus on mediation and to avoid confusion,
we keep with the variable names (X,M,Y) throughout, in-
stead of (Z,X,Y) that appears to be more common in the con-
text of IV estimation.

[5] In the typical application of IV estimation to observational
data, the assumption of independence between UX and UM,Y

required for X to be a “valid instrument” has to be defended
based on theory.

[6] Note that conditioning on M of course also yields depen-
dence between UX and UM in Fig. 2. However, because UM

and UY are independent in Fig. 2, conditional independence
between X and Y is preserved.

[7] Zhang et al. (2009) propose to use so called “latent instru-
ments” in the context of mediation analysis. Thus, they pro-
pose to replace M by its instrumented estimate M̃ where the
instrument is not X but another variable. A drawback of their
approach, and any other approach that conditions on thus in-
strumented estimates M̃ of M in mediation analysis, is that
estimates of direct effects will be biased away from zero.
Therefore, while instrumenting M using an additional vari-
able yields an unbiased estimate of β 2 and thus an unbiased
estimate of the indirect effect, it biases the estimate of the di-
rect effect.

[8] Truly categorical mediators pose an exception to this perfect
observational equivalence (see Pearl 1995) that we omit
from our discussion.

[9] The path connecting M to m in this DAG is fixed to one for
identification.

[10] Note that an analogous problem occurs when the actual (un-
observed) mediator is continuous but only observed categor-
ically, e. g., on a rating scale.

[11] Conditional on an observed sample, the p-value is obviously
just a function of the data.

[12] Appendix A.4 illustrates how to run the test of c* = 0 in R
for a simulated data set based on Fig. 2.

[13] Xi is drawn from a uniform distribution for each
i ∈{1, ... , N}.

[14] Here we use runireg, i. e., the fully conjugate NIG-prior.
We use standard weakly informative prior settings (see Rossi
et al. 2005) and use 5000 draws from the posterior.

A. Appendix

A.1. Mediation according to Baron and Kenny (1986) in R
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# Generate data based on parameters

datsimM = simMediation(beta_1,beta_2,int_1,int_2,sigma_M,sigma_Y,N,X)

# Put data into dataframe

df <- data.frame(y = datsimM$Y, m = datsimM$M, x = datsimM$X)

# Mediation according to Baron and Kenny (1986)

#

# 1st equation: Show correlation between causal variable X and outcome Y.

summary(lm(y ~ x, data=df))

##
## Call:
## lm(formula = y ~ x, data = df)
##
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0716 -0.7185 -0.0052  0.7095  3.7251 
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  1.47036    0.04918   29.90   <2e-16 ***
## x            2.01812    0.08533   23.65   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.089 on 1998 degrees of freedom
## Multiple R-squared:  0.2187, Adjusted R-squared:  0.2183 
## F-statistic: 559.3 on 1 and 1998 DF,  p-value: < 2.2e-16

#

# 2nd equation: Show correlation between causal variable X and mediator M.

summary(lm(m ~ x, data=df))

##
## Call:
## lm(formula = m ~ x, data = df)
##
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0976 -0.6509 -0.0039  0.6512  3.6503 
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  1.00954    0.04462   22.63   <2e-16 ***
## x            4.01341    0.07742   51.84   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9885 on 1998 degrees of freedom
## Multiple R-squared:  0.5736, Adjusted R-squared:  0.5734 
## F-statistic:  2687 on 1 and 1998 DF,  p-value: < 2.2e-16

#

# 3rd equation: Show that mediator M affects outcome Y (i. e., effect is non-zero)

#               and show that M completely mediates X-Y relationship (i. e., effect

#               of X on Y controlling for M is zero, conditional independence).

summary(lm(y ~ x + m, data=df))

##
## Call:
## lm(formula = y ~ x + m, data = df)
##
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2762 -0.6682 -0.0221  0.6705  3.3963 
##
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## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  0.96985    0.04924  19.696   <2e-16 ***
## x            0.02834    0.11674   0.243    0.808
## m            0.49578    0.02203  22.506   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9733 on 1997 degrees of freedom
## Multiple R-squared:  0.3768, Adjusted R-squared:  0.3762 
## F-statistic: 603.7 on 2 and 1997 DF,  p-value: < 2.2e-16

A.2. Properties of the partial mediation and IV models

We first show how the model of partial mediation in Fig. 7 rationalizes the covariance structure between manipulated
X and observed M and Y. We can write down the linear equations corresponding to Fig. 7 as follows:

M = β 1X + UM

Y = β 2M + β 3X + UY

We can then match the coefficients with three observed covariances:

Cov(X,M) = β 1Var(X)
Cov(X,Y) = (β 2β 1 + β 3)Var(X)
Cov(Y,M) = β 2(β 1

2 Var(X) + Var(UM)) + β 1β 3Var(X), since Cov(UY, UM) = 0

Note that Var(UM) is directly identified since Var(M) is observed, i. e., Var(UM) = Var(M) – (β 1)2Var(X).

The system of linear equations corresponding to the IV model in Fig. 3 is given as follows

M = β 1X + UM

Y = β 2M + UY,

with UM,Y = (UM UY )�. We can match the coefficients with the observed covariances in the same fashion as before:

Cov(X,M) = β 1Var(X)
Cov(X,Y) = (β 2β 1)Var(X)
Cov(Y,M) = β 2(β 1

2 Var(X) + Var(UM)) + Cov(UY, UM)

with Cov(UY,UM) ≠ 0 in IV applications. Both in the IV model and the partial mediation model observed Cov(X,M) to-
gether with observed Var(X) identify β 1. The remaining two covariances need to identify two additional parameters in
both models, β 2 and β 3 in the partial mediation model, and β 2 and Cov(UY,UM) in the case of the IV model. In the ab-
sence of prior constraints on these parameters, both models are just identified and will fit any valid covariance matrix
of X, M, and Y perfectly.

A.3. Properties of the model with measurement error

The set of linear equations is given as follows for the model with measurement error in the mediator represented by
Fig. 10:

M = β 1X + UM

m = M + ε m

Y = β 2M + UY

The coefficients are then again matched with three observed covariances:

Cov(X,m) = β 1Var(X)
Cov(X,Y) = (β 2β 1)Var(X)
Cov(Y,m) = β 2(β 1

2 Var(X) + Var(UM))

Note that in the case with measurement error Var(UM) is no longer directly determined by the data because observed
Var(m) is a function of both Var(UM) and measurement error Var(ε m), i. e., Var(m) = (β 1)2 Var(X) + Var(UM) +
Var(ε m). However, the model is relatively more constrained than the IV model or the partial mediation model because
both unobserved variance terms need to be positive.
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# NOTE: we use the parameters and same simulated data (datsimM)

#       that we use in Appendix A.1.

# add an intercept for X (needed by runireg)

data_runireg = list(y = datsimM$Y, X = cbind(rep(1,N),datsimM$X,datsimM$M))

# Run MCMC (stay with default priors)

Mcmc = list(R = 10000)
out_runireg = runireg(Data = data_runireg, Mcmc = Mcmc)

# load functions to compute Compute Bayes Factor (BF)

# see Appendix A.5

source("Compute_BF_Savage_Dickey.R")
constraint = c(0,1,0) # indicate which parameter is tested to be zero
# Bayes Factor

BF_savage_dickey(out_runireg, data_runireg, constraint)

## [1] 112.0747

# Contents of file 'Compute_BF_Savage_Dickey.R' (cf. Appendix A.4)

# Function to evaluate density at constraints given draws of sigma

# 'constraint' indicates which entries are set to zero

den_atconstraints_BF <- function(draws, btilde, constraint, X, A) {

    R = dim(draws$betadraw)[1]
    draw_den = array(0, dim = c(R, 1))
    constraint_ind = seq(1, length(constraint)) * constraint
    constraint_ind = constraint_ind[constraint_ind != 0]
    Factor_sigma = t(X) %*% X + A
    Factor_sigma = chol2inv(chol(Factor_sigma))

for (r in 1:R) {
        sigma_updated = Factor_sigma * draws$sigmasqdraw[r]
        sigma_updated = sigma_updated[constraint_ind, constraint_ind]
        draw_den[r] = lndMvnvec(rep(0, sum(constraint)), btilde[constraint_ind], 

solve(chol(sigma_updated)))
    }
    draw_den
}

# Function to draw from prior

den_atprior_BF <- function(R, constraint, nu, ssq, A, betabar) {

    draw_den = array(0, dim = c(R, 1))
    constraint_ind = seq(1, length(constraint)) * constraint
    constraint_ind = constraint_ind[constraint_ind != 0]

for (r in 1:R) {
        sigmasq_prior = (nu * ssq)/rchisq(1, nu)
        sigmasq_prior_updated = chol2inv(chol(A)) * sigmasq_prior
        sigmasq_prior_updated = sigmasq_prior_updated[constraint_ind, constraint_ind]
        draw_den[r] = lndMvnvec(rep(0, sum(constraint)), betabar[constraint_ind], 

solve(chol(sigmasq_prior_updated)))
    }
    draw_den
}

A.4. Bayes Factors in R

A.5. Savage-Dickey Bayes Factor estimator in R
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# Define functions to compute the Bayes Factor (BF)

lndMvnvec <- function(x, mu, rooti) 
# a vectorized version of lndMvn x is of dimension p times R, mu is a vector

# of length p, rooti is the inverse of the cholesky factor of the p times p

# covariance; the function returns a vector of normal densities on the

# log-scale of length R

{
    z = t(rooti) %*% (x - mu)

return(-(length(x)/2) * log(2 * pi) - 0.5 * colSums(z * z) + sum(log(diag(rooti)
)))
}

# Final function to compute Bayes Factor a la Savage-Dickey

BF_savage_dickey <- function(draws, Data_xm, constraint) {
# Do computations

    nvar = dim(draws$betadraw)[2]
    A = 0.01 * diag(nvar)
    betabar = rep(0, nvar)
    RA = chol(A)
    X = Data_xm$X #cbind(x,datsimM$m)
    W = rbind(X, RA)
    Z = c(Data_xm$y, as.vector(RA %*% betabar))
    IR = backsolve(chol(crossprod(W)), diag(nvar))
    btilde = crossprod(t(IR)) %*% crossprod(W, Z)

# Evaluate numerator
    BF_numerator = den_atconstraints_BF(draws, btilde, constraint, X, A)

# Denominator now
    nu = 3
    ssq = var(Data_xm$y)
    betabar = c(rep(0, nvar))

    BF_denominator = den_atprior_BF(dim(draws$betadraw)[1], constraint, nu, 
        ssq, A, betabar)

# Bayes Factor
    BF = mean(exp(BF_numerator))/mean(exp(BF_denominator))

# Return results
return(BF)

}
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